Swinging of red blood cells under shear flow.

نویسندگان

  • Manouk Abkarian
  • Magalie Faivre
  • Annie Viallat
چکیده

We reveal that under moderate shear stress (etagamma[over ] approximately 0.1 Pa) red blood cells present an oscillation of their inclination (swinging) superimposed to the long-observed steady tank treading (TT) motion. A model based on a fluid ellipsoid surrounded by a viscoelastic membrane initially unstrained (shape memory) predicts all observed features of the motion: an increase of both swinging amplitude and period (1/2 the TT period) upon decreasing etagamma[over ], a etagamma[over ]-triggered transition toward a narrow etagamma[over ] range intermittent regime of successive swinging and tumbling, and a pure tumbling at low etagamma[over ] values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow.

A three-dimensional (3D) simulation study of the effect of inertia on the dynamics of vesicles and red blood cells (RBCs) has not been reported. Here, we developed a 3D model based on the front tracking method to investigate how inertia affects the dynamics of spherical/non-spherical vesicles and biconcave-shaped RBCs with the Reynolds number ranging from 0.1 to 10. The results showed that iner...

متن کامل

Tension of red blood cell membrane in simple shear flow.

When a red blood cell (RBC) is subjected to an external flow, it is deformed by the hydrodynamic forces acting on its membrane. The resulting elastic tensions in the membrane play a key role in mechanotransduction and govern its rupture in the case of hemolysis. In this study, we analyze the motion and deformation of an RBC in a simple shear flow and the resulting elastic tensions on the membra...

متن کامل

Influence of deformability of human red cells upon blood viscosity.

The viscosity of blood at high rates of shear is unusually low compared to other suspensions of similar concentration. The underlying mechanisms were studied by rotational viscometry, red cell filtration, viscometry of packed cells and direct microscopic observation of red cells under flow in a transparent cone plate viscometer. Deformability of red cells was altered osmotically or abolished by...

متن کامل

Full dynamics of a red blood cell in shear flow.

At the cellular scale, blood fluidity and mass transport depend on the dynamics of red blood cells in blood flow, specifically on their deformation and orientation. These dynamics are governed by cellular rheological properties, such as internal viscosity and cytoskeleton elasticity. In diseases in which cell rheology is altered genetically or by parasitic invasion or by changes in the microenv...

متن کامل

Mathematical Analysis of MHD Flow of Blood in Very Narrow Capillaries (RESEARCH NOTE)

A mathematical model for blood flow in narrow capillaries under the effect of transverse magnetic field has been investigated. It is assumed that there is a lubricating layer between red blood cells and tube wall. The transient flow of the fit red blood cell surrounded by plasma annulus in the narrow capillary is considered. The analysis of fluid flow between red cell and tube wall, when the ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 98 18  شماره 

صفحات  -

تاریخ انتشار 2007